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Abstract.
Background: Recent studies have shown that amyloid-� (A�) burden influenced white matter (WM) integrity before the
onset of dementia.
Objective: To assess whether the effects of A� burden on WM integrity in cognitively normal (CN) individuals were
regionally specific.
Methods: Our cohort consisted of 71 CNs from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database who
underwent both AV45 amyloid-PET and diffusion tensor imaging. Standardized uptake value ratio (SUVR) was computed
across four bilateral regions of interest (ROIs) corresponding to four stages of in vivo amyloid staging model (Amyloid stages
I–IV). Linear regression models were conducted in entire CN group and between APOE �4 carriers and non-carriers.
Results: Our results indicated that higher global A�-SUVR was associated with higher mean diffusivity (MD) in the entire
CN group (p = 0.023), and with both higher MD (p = 0.015) and lower fractional anisotropy (FA) (p = 0.026) in APOE �4
carriers. Subregion analysis showed that higher Amyloid stage I-II A�-SUVRs were associated with higher MD (Stage-1:
p = 0.030; Stage-2: p = 0.016) in the entire CN group, and with both higher MD (Stage-1: p = 0.004; Stage-2: p = 0.010) and
lower FA (Stage-1: p = 0.022; Stage-2: p = 0.014) in APOE �4 carriers. No associations were found in APOE �4 non-carriers
and in Amyloid stage III-IV ROIs.
Conclusions: Our results indicated that the effects of A� burden on WM integrity in CNs might be regionally specific,
particularly in Amyloid stage I-II ROIs, and modulated by APOE �4 status.
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INTRODUCTION

Amyloid-� (A�) deposition in Alzheimer’s dis-
ease (AD) can be detected by amyloid PET preceding
the onset of cognitive decline by several decades [1,
2]. In addition, diffusion tensor imaging (DTI) stud-
ies demonstrate loss of white matter (WM) integrity
in AD starting from the preclinical phase [3–7].
Increased mean diffusivity (MD) and decreased frac-
tional anisotropy (FA) on DTI are regarded as
biomarkers reflecting the loss of axons and myelin
in the WM [8, 9]. Previous studies have investigated
the relationships between A� deposition and WM
integrity in the preclinical phase of AD. In a cohort
of non-demented elders, two studies reported similar
findings that subjects with lower cerebrospinal fluid
(CSF) A� level showed higher MD and lower FA on
DTI [10, 11].

Since the CSF levels of A� failed to show spatial
difference of A� deposition, subsequent researches
have examined the relationships between neuroimag-
ing of A� deposition and WM integrity using amyloid
PET [12, 13]. However, results have been inconsis-
tent. For instance, one study found that an increase of
neocortical A� burden assessed by amyloid PET was
associated with an increase of MD in cognitive nor-
mal (CN) adults [12], whereas another study failed
to find such an effect when assessing global A� level
that are commonly used for classifying subjects into
A�-positive or negative [13]. Based on these find-
ings, we hypothesized that the associations between
A� load and WM integrity in the asymptomatic phase
of AD would be regionally specific.

Up to now, both autopsy [14–16] and PET [17] evi-
dence have suggested that the ordering of regional A�
deposition followed a relatively consistent pattern.
The deposition of A� plaques starts from the basal
temporal and medial frontal cortices, then spreads to
the rest of associative neocortices, primary sensory-
motor regions and medial temporal areas, and lastly
the striatum. Grothe et al. defined these brain regions
as Amyloid stages I, II, III, and IV, respectively [18].
Of the regions mentioned as showing loss of WM
integrity in persons with A� accumulation, the neo-
cortices are most relevant [12, 19], which are the first
to develop A� pathology and correspond to Amyloid
stages I and II [18].

In our study, we investigated the possible asso-
ciations between A� deposition assessed by AV45
amyloid PET and WM microstructure assessed by
DTI in cognitively normal (CN) individuals from
the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database. We assessed regional A� deposi-
tion in those brain regions, which are known to show
increased susceptibility to A� pathology as defined
by the in vivo established Amyloid staging model
[18]. We hypothesized that the possible associations
between high A� load and loss of WM integrity only
existed in those neocortical regions corresponding to
Amyloid stages I and II. Furthermore, we explored
whether the possible associations were influenced by
APOE genotypes.

MATERIALS AND METHODS

Study subjects and ADNI database

All participants recruited in our study were from
the ADNI (ADNI-2 and ADNI-GO) cohort. The
ADNI was a public-private partnership, which was
led by principal investigator Michael W. Weiner, MD.
Established in 2003, the ADNI aims to track the pro-
gression of mild cognitive impairment (MCI) and
early AD using PET, magnetic resonance imaging
(MRI), other biological markers, as well as neu-
ropsychological and clinical assessment. Till now, the
ADNI database has recruited over 1,500 individuals
from no less than 50 sites across Canada and America.
All participants provided written informed consent.
More information can be found at http://www.adni-
info.org. In our study, we restricted the present
analyses to CN individuals whose data of AV45
amyloid-PET, DTI, WM hyperintensities (WMH)
volume, and APOE genotype were available. Detailed
descriptions of inclusion and exclusion criteria for
CN individuals have been reported previously [20,
21]. Briefly, subjects were clinically categorized by
ADNI centers as CN with a Mini-Mental State Exam-
ination (MMSE) scores of 24–30 where lower scores
suggest more cognitive impairment (range, 0–30),
and a Clinical Dementia Rating (CDR) score of 0
where lower scores indicate less cognitive impair-
ment (range, 0–3). Subjects were assigned to the
APOE �4 carriers when carrying at least one APOE
�4 allele. Finally, our study recruited 71 CN individ-
uals, including 23 APOE �4 carriers and 48 APOE �4
non-carriers at baseline (Table 1).

DTI data

DTI data was downloaded from the ADNI
database. A detailed description of DTI image
acquisition and processing can be found at
http://adni.loni.usc.edu/datasamples/mri/. In brief, to

http://www.adni-info.org
http://adni.loni.usc.edu/datasamples/mri/
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Table 1
Subject disposition and demographic characteristics

CN APOE �4 carriers APOE �4 non-carriers p

n 71 23 48 –
Age (y) 72.82 ± 5.59 70.82 ± 3.79 73.77 ± 6.08 0.015
Gender (male/female) 31/40 8/15 23/25 0.430
Education (y) 16.37 ± 2.70 15.57 ± 2.64 16.75 ± 2.66 0.085
WMH (cm3) 8.94 ± 14.72 11.24 ± 22.81 7.83 ± 8.69 0.495

Data are given as mean ± standard deviation unless otherwise indicated. CN, cognitively normal individuals;
APOE, Apolipoprotein. The differences in demographic characteristics between APOE �4 carriers and APOE �4
non-carriers were tested using t tests for continuous variables and Chi-squared tests for dichotomous variables.
Bold text indicates p < 0.05.

segment WM regions of interest (ROIs), the FA image
from the Johns Hopkins University (JHU) DTI atlas
[22] was registered to each subject using mutual infor-
mation based elastic registration algorithm which was
described previously [23]. Then, the deformation was
applied to the stereotaxic JHU “Eve” WM atlas labels
using nearest neighbor interpolation to avoid inter-
mixing of labels. This placed the atlas ROIs in the
same coordinate space as our DTI maps. Finally,
fifty-two WM ROIs were determined by the JHU
white-matter tractography atlas. A list of the fifty-two
WM ROIs can be found in Supplementary Table 1.
For MD and FA on DTI are widely used biomarkers
of WM integrity [8, 9], we computed average MD and
FA values of the fifty-two WM ROIs for each indi-
vidual as global MD and global FA, which represent
the level of global WM microstructure.

AV45 amyloid-PET data

AV45 amyloid-PET data was also downloaded
from the ADNI database. A detailed description
of PET image acquisition and processing can be
found at http://adni.loni.usc.edu/datasamples/pet/. In
our study, we assessed global and regional AV45
amyloid-PET levels separately. Firstly, we averaged
A� tracer uptake across four cortical regions (frontal,
anterior/posterior cingulates, lateral parietal, lateral
temporal) as global A� load that are commonly used
for classifying subjects into A�-positive or negative
[24]. And then we applied a recently proposed in vivo
staging system of regional amyloid [18], that sug-
gests A� deposition initiates in the basal temporal
and medial frontal cortices (Amyloid stage I), then
spreads to the rest of associative neocortices (Amy-
loid stage II), primary sensory-motor regions and
medial temporal areas (Amyloid stage III), and lastly
the striatum (Amyloid stage IV) [18]. We chose four
brain regions corresponding to Amyloid stages I–IV
as ROIs (shown in Fig. 1). We averaged A� tracer

uptake across brain regions that are included within
each Amyloid stage ROI as stage-specific regional
A� load. A list of brain regions that are included
within each Amyloid stage ROI can be found in Sup-
plementary Table 2. Finally, these mean values were
normalized to the eroded WM reference region to
obtain global and regional SUVR scores. The reason
for choosing the eroded WM as a reference region was
that reference regions containing subcortical eroded
WM in cross-sectional studies appeared to be more
accurate and sensitive when compared to cerebel-
lum [25–29], and a recent study showed that WM
A� tracer uptake may be an early predictor of WM
microstructure [30].

Statistical analysis

We tested the differences in demographic charac-
teristics between APOE �4 carriers and APOE �4
non-carriers using t tests for continuous variables
and Chi-squared tests for dichotomous variables. We
evaluated whether increased global or regional (i.e.,
four ROIs corresponding to Amyloid stages I–IV)
AV45 amyloid-PET SUVRs were associated with the
loss of WM integrity (i.e., global MD or global FA)
using linear regression models, controlling for age,
gender, educational level, and APOE �4 status (Model
1). To test whether the above associations were inde-
pendent of WMH volume, we further included WMH
volume as a covariate (Model 2). Considering that
the accurate definition of a clinically meaningful
cutoff value of SUVR in CN population remains
unclear [31, 32] and using different cutoff values of
SUVR may result in different findings [33], our study
treated the level of A� deposition as a continuous
variable. MD, FA, and AV45 amyloid-PET SUVR
scores were log transformed prior to this analysis
in order to approximately fit the normal distribution.
Both the log-transformed independent and dependent
variables in linear regression models were converted

http://adni.loni.usc.edu/datasamples/pet/
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Fig. 1. Staging systems for amyloid-PET. Spatial mapping of amyloid stage-specific ROIs that were used to determine regional AV45
amyloid-PET uptake.

Table 2

A� burden Global SUVR Stage-1 SUVR Stage-2 SUVR Stage-3 SUVR Stage-4 SUVR
WM integrity MD FA MD FA MD FA MD FA MD FA

Whole group (N = 71)
Model 1 � coefficients 0.246 –0.204 0.234 –0.168 0.260 –0.226 0.129 –0.110 –0.092 0.147

p 0.023 0.080 0.030 0.149 0.016 0.051 0.247 0.362 0.416 0.223
Model 2 � coefficients 0.201 –0.154 0.204 –0.136 0.211 –0.172 0.111 –0.089 –0.037 0.088

p 0.045 0.154 0.039 0.204 0.035 0.110 0.28 0.417 0.726 0.433

APOE �4 carriers (N = 23)
Model 1 � coefficients 0.416 –0.405 0.456 –0.395 0.438 –0.442 0.334 –0.308 –0.024 0.158

p 0.015 0.026 0.004 0.022 0.010 0.014 0.057 0.099 0.902 0.437
Model 2 � coefficients 0.417 –0.406 0.462 –0.402 0.438 –0.440 0.334 –0.306 –0.029 0.171

p 0.018 0.030 0.005 0.023 0.013 0.018 0.065 0.110 0.887 0.416

APOE �4 non-carriers (N = 48)
Model 1 � coefficients 0.180 –0.118 0.127 –0.054 0.207 –0.152 0.094 –0.099 –0.098 0.106

p 0.202 0.431 0.381 0.722 0.139 0.306 0.532 0.529 0.513 0.505
Model 2 � coefficients 0.095 –0.032 0.057 0.015 0.118 –0.063 0.028 –0.036 0.069 –0.056

p 0.460 0.816 0.663 0.913 0.354 0.649 0.835 0.806 0.626 0.712

A�, amyloid-�; APOE, Apolipoprotein; SUVR, standard uptake value ratio; WM, white matter. Model 1: p-values are based on linear
regression models controlled for age, gender, education, and APOE �4 genotype. Model 2: p-values are based on linear regression models
controlled for age, gender, education, APOE �4 genotype, and WMH volume. Bold text indicates p < 0.05.

into normalized z scores. Estimated effects of AV45
amyloid-PET SUVR on WM integrity are reported as
� coefficients. Since all outcome variables were con-
verted into normalized z scores, � coefficients refer to
standardized effects. All statistical analyses were per-
formed using a software program (R, version 3.6.0;
The R Foundation). The criterion for statistical signif-
icance was p < 0.05. We did not correct for multiple
comparisons because we expected to see differences
only in ROIs affected at early Amyloid stages and
included later-stage ROIs as control regions.

RESULTS

A total of 71 CN individuals were enrolled in
our study, 40 of them were women and 31 of them
were men. The mean age and education level of the
entire CN cohort was 72.82 ± 5.59 and 16.37 ± 2.70
years, respectively (see Table 1 for sample character-

istics). Of the total, 48 had no APOE �4 allele, 22
had one, and 1 had two alleles. Subjects with at least
one copy of the APOE �4 allele were categorized
as APOE �4 carriers, and the others were classified
into non-carriers. APOE �4 non-carriers with a mean
age of 73.77 ± 6.08 years were older than carriers
with a mean age of 70.82 ± 3.79 years (p < 0.05).
No statistical differences in gender, education, and
WMH volume were found between this two groups
(p > 0.05).

In a first step, we tested the hypothesis that the
increased A� deposition would be associated with
the loss of WM integrity. We averaged A� tracer
uptake across four cortical regions (frontal, ante-
rior/posterior cingulates, lateral parietal, and lateral
temporal) as global A� load that are commonly used
for classifying subjects into A�-positive or negative
[24]. Our results indicated that higher global AV45
amyloid-PET SUVR was associated with higher MD
in the entire CN group (p = 0.023), and with both
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higher MD (p = 0.015) and lower FA (p = 0.026) in
APOE �4 carriers when testing via linear regression
models controlled for age, gender, education, and
APOE �4 genotype (see model 1 in Table 2). To test
whether the above associations were independent of
WMH volume, we further included WMH volume as
a covariate and the results did not alter (see model 2
in Table 2).

We next tested whether the effects of A� deposition
on WM integrity were regionally specific. For this, we
assessed the AV45 amyloid-PET SUVR within four
brain regions corresponding to Amyloid stages I–IV
(Fig. 1) that recapitulate the spatial A�-spreading pat-
tern from early-to-late-stage A� pathology [18]. The
subregion analysis showed that the above positive
findings only existed within regions corresponding to
Amyloid stages I-II, which indicated that the higher
regional AV45 amyloid-PET SUVRs in stage-1 and
stage-2 ROIs were associated with higher MD (Stage-
1: p = 0.030; Stage-2: p = 0.016) in the entire CN
group, and with both higher MD (Stage-1: p = 0.004;

Stage-2: p = 0.010) and lower FA (Stage-1: p = 0.022;
Stage-2: p = 0.014) in APOE �4 carriers when con-
trolling for age, gender, education, and APOE �4
genotype (see model 1 in Table 2). When additionally
controlling for WMH volume, these above associa-
tions remained fully consistent again (see model 2 in
Table 2).

There were no significant associations in APOE �4
non-carriers or in regions corresponding to Amyloid
stages III-IV. The associations of global and regional
A� deposition with MD and FA were shown in Figs. 2
and 3, respectively. Detailed � coefficients and p-
values in total CN group including APOE �4 carriers
and APOE �4 non-carriers were listed in Table 2.

DISCUSSION

Here, we adopted a hierarchical model of in vivo
amyloid staging proposed by Grothe and colleagues
[18] and applied it to explore possible associations of

Fig. 2. Associations of global and regional A� burden with MD assessed by DTI. Global and regional (i.e., four ROIs corresponding to
Amyloid stages I–IV) AV45 amyloid-PET SUVRs for each subject were plotted on the X axis, and MD for each subject assessed by DTI
was plotted on the Y axis. AV45 amyloid-PET SUVR scores and MD were log transformed prior to this analysis in order to approximately
fit the normal distribution. Both the log-transformed independent and dependent variables in linear regression models were converted into
normalized z scores. The regression line is drawn separately for APOE �4 carriers and APOE �4 non-carriers for ease of comparison. A�,
amyloid-�; ROI, region of interest; SUVR, standard uptake value ratio.
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Fig. 3. Associations of global and regional A� burden with FA assessed by DTI. Global and regional (i.e., four ROIs corresponding to
Amyloid stages I–IV) AV45 amyloid-PET SUVRs for each subject were plotted on the X axis, and FA for each subject assessed by DTI
was plotted on the Y axis. AV45 amyloid-PET SUVR scores and FA were log transformed prior to this analysis in order to approximately
fit the normal distribution. Both the log-transformed independent and dependent variables in linear regression models were converted into
normalized z scores. The regression line is drawn separately for APOE �4 carriers and APOE �4 non-carriers for ease of comparison. A�,
amyloid-�; ROI, region of interest; SUVR, standard uptake value ratio.

A� deposition assessed by AV45 amyloid-PET with
WM microstructure assessed by DTI in a cohort of
CN individuals from the ADNI database. Our results
indicated that: 1) the effects of A� load on WM
integrity were regionally specific: basal temporal and
medial frontal cortices, and the remaining associa-
tive neocortices (Amyloid stage I-II), which were the
first to develop A� pathology, showed greater effects
than primary sensory-motor regions and medial tem-
poral areas, and the striatum (Amyloid stage III-IV),
which only accrued A� plaques during symptomatic
phase of AD; and 2) the aforementioned effects only
existed in APOE �4 carriers, which indicated that the
effects of A� load on WM integrity were modulated
by APOE �4 status.

Our results provided supportive evidence for recent
findings, which demonstrated that increased A� load
was associated with the loss of WM integrity before
the onset of dementia [10–13]. A preliminary study
by Kalheim et al. compared subjects with low (A�
positive) and normal CSF A� (A� negative) in a

cohort of non-demented elders consisting of MCI or
subjective cognitive decline (SCD) and found that
increased MD in subjects with low CSF A� [10].
Another study compared FA on DTI between sub-
jects with higher A� load (A� positive, Amyloid PET
SUVR > 1.69) and subjects with lower A� load (A�
negative, Amyloid PET SUVR < 1.40) in a cohort
of non-demented elders consisting of CN and MCI
subjects. They found that higher A� burden was
associated with lower FA in the presence of neu-
rodegeneration (by hippocampal atrophy on MRI and
hypometabolism on fluorodeoxyglucose PET) [13].
However, previous studies grouped participants into
“A� positive” and “A� negative” based on CSF A�
level or global A� deposition on amyloid PET [10,
13], which might fail to explore whether the effects
of A� load on WM integrity showed regional dif-
ferences. In addition, since conventionally defined
“A� positive” usually corresponds to relatively late
stages of A� pathology [31, 34], previous studies [10,
13] might fail to explore the potential associations
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between early stages of A� pathology and WM
integrity.

In our study, we treated the level of A� deposition
as a continuous variable, considering that the accurate
definition of a clinically meaningful cutoff value of
SUVR in CN population remains unclear [31, 32] and
using different cutoff values of SUVR might result
in different findings [33]. Compared with previous
studies, our study could detect the early stages of
A� pathology below the threshold of conventionally
defined “A� positive” by treating the level of A� load
as a continuous variable.

We explored whether the potential associations
between A� load and WM integrity showed regional
differences by assessing regional AV45 amyloid-PET
SUVR within four brain regions that recapitulate the
spatial A�-spreading pattern from early-to-late-stage
A� pathology [18]. Our results indicated that the
higher regional AV45 amyloid-PET SUVRs in stage-
1 and stage-2 ROIs were associated with higher MD
in the entire CN group, and with both higher MD and
lower FA in APOE �4 carriers. We selected later-stage
ROIs (Amyloid stage III-IV) as control regions and
did not find any associations between A� load and
WM integrity in stage-3 and stage-4 ROIs. Although
the p-value of stage-3 SUVR in the regression model
regarding MD for the APOE �4 carriers subgroup
approached the significance level (p = 0.065), we did
not find any associations between stage-3 SUVR and
MD/FA in the entire CN group and the association
between stage-3 SUVR and MD in the APOE �4
carriers subgroup also failed to achieve the signifi-
cant level (p < 0.05). These findings suggested that
the associations between A� load and WM integrity
in brain regions corresponding to Amyloid stages I-
II were more significant than those in brain regions
corresponding to Amyloid stages III-IV. The results
were also in agreement with previous reports that A�
deposition in neocortices, which correspond to Amy-
loid stages I-II, was associated with WM integrity in
CN individuals [12, 19]. Since Amyloid stages I-II
ROIs in vivo correspond to Thal amyloid phase 1 at
autopsy [14], the similar findings in our study and pre-
vious studies [12, 19] suggested that the associations
between A� accumulation and WM integrity starting
from a very early stage and WM integrity assessed
by DTI may be an early marker of A� pathology.
We restricted the present analyses to CN individu-
als, whereas A� deposition in regions corresponding
to Amyloid stages III-IV started from symptomatic
phase of AD, which led to reduced variability in AV45
amyloid-PET levels in these brain regions and might

be the reason for the negative results. Additionally,
the results of our study were required based on rather
small sample size, which might attribute to the neg-
ative results as well. In our study, the p-value of
stage-3 SUVR regarding MD approached the signifi-
cance level. Future studies with larger sample size are
needed to explore the effect of A� deposition in later-
stage ROIs (Amyloid stage III-IV) on WM integrity
in a mixed population consisting of CN, MCI and AD
patients. The association between Stage-3 SUVR and
MD/FA may be stronger on a larger cohort.

Our second major finding was that increasing A�
load in early A�-associated brain regions, occurred
only in APOE �4 carriers. We therefore hypothesized
that the effect of A� load on WM integrity was mod-
ulated by APOE �4 status. This was consistent with
the findings of recent studies exploring the effects of
APOE �4 alleles on WM integrity. A study by Lee
et al. found that APOE �4 carriers showed lower FA
values in a cohort of SCD when compared with non-
carriers [35]. Another study by Williams et al. [36]
examined the interactive effects of vascular burden
and APOE �4 status on WM integrity in CN elders
and found APOE �4 carriers had greater decline in
FA when compared to non-carriers. Given the small
sample size of our study, the significant associations
should be interpreted cautiously.

The above findings did not alter when addition-
ally controlling for WMH volume, suggesting that
the associations between A� load and WM integrity
were independent of WMH volume. Recent stud-
ies have indicated that small vessel disease (SVD)
may play an important role in the pathology of AD
[37, 38], and SVD mainly affects subcortical WM.
For WMH were often thought to be one of mark-
ers of SVD [39], we hypothesized that the effects of
A� load on WM integrity might be independent of
SVD. However, WMH are only one aspect of SVD,
and many other manifestations are often detected in
patients with SVD (e.g., cerebral microbleeds and
lacunar cerebral infarction). Future studies are needed
to determine whether the relationships between A�
load and WM integrity are mediated by SVD.

Limitations

The present study has some limitations. Firstly, the
sample size of the study was rather small, which may
reduce the testing efficiency of whole and subgroup
analyses to some extent. Secondly, majority partic-
ipants in our study were relatively old (mean age:
72.82 years). Previous study indicated that middle-
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aged adults may be an optimal target for early
intervention. However, it remains unclear whether
A� deposition is associated with WM integrity in
middle-aged adults. Thirdly, as a cross-sectional
study, we did not detect longitudinal associations
between A� load and WM integrity. Finally, the p val-
ues in our study were just on the significant edge and
the associations may be stronger on a larger cohort.
There is a need to conduct a follow-up study with
larger sample size and broader age range in the future.

Conclusions

In summary, the main finding of our current study
was that increased A� load in basal temporal and
medial frontal cortices, and the remaining associative
neocortices (Amyloid stage I-II) might be associated
with the loss of WM integrity in absence of cognitive
impairment. The effects were more obvious with the
presence of APOE �4 alleles.
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